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CONTROLLER DESIGN FOR NOFILINEAR AND TINE VARYING PLANTS 

Richard V. Monopoli* 

SUMMARY 

A technique f o r  con t ro l l e r  design previously reported234, i s  general ized 
The technique, based herein t o  include a wide c l a s s  of p lan t  nonl inear i t ies .  

on Liapunov's Second Method, generates a control  s i g n a l  which forces  the  p lan t  
states t o  be close t o  t h e  states of a model reference.  I n  addi t ion  t o  the  
genera l iza t ion ,  t h e  technique i s  extended t o  include convergence time, i.e. 
time of response t o  i n i t i a l  per turbat ions of t h e  equilibrium, as p a r t  of t he  

make it more a t t r a c t i v e  from an engineering point of view. 
design moblem. Also, modifications t o  the o r i g i n a l  technique 

INTRODUCTION 

Much of t h e  l i t e r a t u r e  deal ing with Liapunov's Second Method concerns it- 
self with ana lys i s  of s t a b i l i t y  problems. 
method i s  applied t o  engineering design problems, include works by Bass1, 
Grayson2,3, Monopoli4, Johnson5, and Nahi 6 . 

Notable exceptions, i n  which t h e  

I n  t h i s  repor t ,  a method i s  presented f o r  design of con t ro l l e r s  employing 
a model reference which general izes  the technique due t o  Grayson. The general i -  
za t ion  is  t o  a much broader c l a s s  o f  nonlinear p l an t s  than previously reported4. 
I n  addi t ion t o  the  ?enera l iza t ion ,  t h e  technique i s  extended t o  include conver- 
qence t i m e ,  i .e. time of response t o  i n i t i a l  per turbat ions o f  t h e  equilibrium, 
as pa r t  of t h e  design problem. Also, cer ta in  modifications of Grayson's tech- 
niques are made which r e s u l t  i n  a reduced cont ro l  s igna l  l e v e l  and avoid t h e  
need f o r  using der iva t ives  of t he  input s igna l  i n  generating the  cont ro l  s ignal .  

The technique is  applied t o  p l an t s  which include square l a w  damping, s ta t ic  
f r i c t i o n ,  toulomb f r i c t i o n ,  and hard and s o f t  spring type nonl inear i t ies .  
s u l t s  of d i g i t a l  computer simiilations f o r  these  p l an t s  a r e  presented. 
not exhaust t h e  p o s s i b i l i t i e s ,  but .serve on ly  t o  demonstrate the method. 
f a c t ,  t he  technique is  appl icable  t o  a wide v a r i e t y  of nonlinear p l an t s  provided 
t h e  form of t h e  nonlinear i ty  i s  known. 
t h a t  t h e  form of t h e  nonlinear funct ion of the p l an t  s t a t e s  be generated. Yew- 
ever ,  if an upper bound on the  magnitude o f  the  argument of t he  nonlinear func- 
t i o n  is  known, t h i s  requirement can be relaxed and the  exact form of nonlin- 
e a r i t y  can be replaced by the maEnitude of i t s  argument. 
c l a r i f i e d  through the  several  examples presented. 

Re- 
These do 

I n  

I n  general ,  t h e  cont ro l  l a w  requi res  

These points  a r e  

+$Elec t r ica l  Engineering Department, University of Connecticut, S t o r r s ,  
Connecticut 
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The question of convergence time, i.e. t h e  time requi'red f o r  t h e  p l an t  
states t,o become equal t o  t h e  model s t a t e s ,  has not been t r e a t e d  previously 
i n  a design context. I n  t h e  event t h a t  t he  plant  i s  t racking t h e  model, t he  
cont ro l  act ion i s  such t h a t  p l an t  and model outputs  d i f f e r  only s l i g h t l y  and 
the  difference is  reduced t o  zero q u i t e  rapidly.  A de ta i l ed  examination of 
convergence time i s  no t  e s s e n t i a l  i n  t h i s  s i t ua t ion .  However, when a system 
is  s t a r t ed  with p lan t  s t a t e s  g r e a t l y  d i f f e r e n t  frm m d e l  states, it i s  im- 
por tan t  t o  know how design parameters can be se lec ted  t o  reduce t h i s  i n i t i a l  
e r r o r  t o  zero i n  a spec i f ied  time. 
a t t en t ion  i n  the recent  l i t e r a tu re5 ,b  is t h a t  of the  time-optimal and quas i  
time-optimal cont ro l  problem. 

A c lose ly  r e l a t e d  problem receiving 

I n  general ,  it i s  not an easy matter t o  choose parameters so t h a t  con- 
vergence time i s  minimized. 
design of an nth order p lan t  such t h a t  convergence time is  minimized. The 
ana ly t i ca l  d i f f i c u l t i e s  f o r  p l an t s  higher than second order are so g r e a t  
t h a t  it was decided a more f r u i t f u l  approach would be t o  a r r i v e  a t  r e s u l t s  
by i n t u i t i o n  gained from the  solut ion of t he  second order  problem. 
v a l i d i t y  of these  r e s u l t s  f o r  a t h i r d  order  p lan t  w a s  then checked using an 
analogue comnuter simulation. The computational pa r t  of t h i s  work was 
car r ied  out i n  the  Computer Center of t h e  University of Connecticut which is  
supported i n  par t  by Grant No. GP-1819 of t he  National Science Foundation. 
The author i s  indebted t o  M r .  Donald Jorgenson f o r  programming the IBM 7040 
computer t o  solve the  examples presented. 

I n  t h i s  repor t ,  the  problem i s  presented of t h e  

The 

SYNTHESIS TECHNIQUE 

The control ler  synthesis  technique presented herein appl ies  t o  s i n g l e  
output plants  (Fig. 1) which can be described by a set  of n first order  
d i f f e r e n t i a l  equations of the  form 

. 
% = % + I  i = 1, 2 ..... n-1 ( l a >  

or equivalent ly  . 
5 = f. (z, u, Tr t> (IC) 

where r i s  the command input ,  u t h e  cont ro l  s igna l ,  and t h e  5 ' s  t h e  state 
va r i ab le s  . 

The presence of der iva t ives  of r and u i n  the  funct ion f allows f o r  t he  
p o s s i b i l i t y  of plant  zeroes. 

2 



Fig. 1 - General System Configuration 

With c e r t a i n  r e s t r i c t i o n s  on t h e  form of f which w i l l  be considered 

This con t ro l  l a w  prescr ibes  what 
later,  form (1) is  necessary and s u f f i c i e n t  f o r  der iv ing  a cont ro l  l a w  from 
a Liapunov func t ion  of quadra t ic  form. 
con t ro l  s i g n a l  u i s  requi red  t o  cause t h e  behavior of t h e  p l an t  t o  be  l i k e  
t h a t  of a model re ference  with behavior governed by t h e  l i n e a r  constant co- 
e f f i c i e n t  vec to r  d i f f e r e n t i a l  equation . 

q = A, X,-J + B d  (2) - - 
where q is an n vector with model s ta te  var iab les  as elements, Bo is an 
m constant matrix, and A, i s  a s t a b l e  nxn constant matrix of t h e  canonical 
f om 

- 

A. = . 

The form of (1) o r  (2a) implies e i the r  t h a t  t h e  set of s ta te  va r i ab le s  
chosen i s  comprised of t he  output s i g n a l  and i ts  first n-1 de r iva t ives ,  or 
t h a t  an appropr ia te  transformation from a d i f f e r e n t  set of va r i ab le s  was 
used. 
i s  a necessa 
con t ro l l ab le  7 8  

It is  i n t e r e s t i n g  t o  note t h a t  t h e  exLstence of  such a transformation 
and s u f f i c i e n t  condition for a l i n e a r  autononious p lan t  t o  be 

3 



In  order t o  use t h e  second method of Liapunov i n  c o n t r o l l e r  design, it 
i s  necessary t o  have a d i f f e r e n t i a l  equation with a w e l l  def ined equilibrium, 
s ince  t h e  second method concerns i t s e l f  with the  s t a b i l i t y  of  the equilibrium 
poin ts  of d i f f e r e n t i a l  equations. 
model reference t h a t  an equation with a su i t ab le  equilibrium can be derived. 
This i s  done by defining an e r ro r  vector  

I n  t,his design, i t  i s  through use of t h e  

e = q - X  (3 )  - - -  
The function of t h e  con t ro l l e r  i s  t o  cause e t o  approach zero. 

- e = xd - x, 
t i a l7quaTion  i n  t h e  e r r o r  va r i ab le  

Since 
0 .  . 

then ( I C )  can be subtracted from ( 2 )  t o  give a vector d i f fe ren-  

It is  t o  t h i s  equation t h a t  t he  second method is applied. 
i s  directed toward maintaining t h e  equilibrium of (4), 2 = 0 ,  asymptotically 
s t a b l e  i n  t h e  whole. 

The con t ro l  e f f o r t  

A function of t h e  e r ro r  s ta tes  of quadra t ic  form provides a convenient 
s t a r t i n g  point f o r  desi\qn. 

where P is a matrix t o  be determined. The time de r iva t ive  of ( 5 )  i s  

L e t  t h i s  funct ion be 

( 5 )  T v(2) = 2 p e 

The equilibrium, 2 = 0, can be made asymptot ical ly  s t a b l e  (and consequently 
(5) will be a Liapunov funct ion for  (4) ) i f  

T 1. The so lu t ion  of  t h e  equation A,P + P A, = -Q (where Q i s  
pos i t ive  d e f i n i t e )  y i e l d s  a pos i t i ve  d e f i n i t e  P. 

2. can be chosen t o  make the  second term on t h e  r i g h t  hand 
s ide of ( 6 )  non-positive. 

The f i r s t  condition w i l l  be  m e t  as a consequence of choosing A, t o  be 
a s t ab le  matrix. 
meets cer ta in  requirenents ,  and i t s  form and bounds are known. 

The second condition can be met provided t h e  funct ion f 

Res t r i c t ions  on t h e  Function f 

I n  the spec ia l  case of a l i n e a r  time-varying p l an t ,  t he  funct ion f re- 
duces t o  a l i n e a r  combination of t he  n l an t  s ta tes  p lus  terms involving t h e  
elenents  of 5 and r.  For exanple 

f=a_x+btl+cy T T T 

4 



e 3 
r Cont ro l le r  U > > and 

Model x I 

. where 2, 12, and 2 are n vec tors  with time-varying elements 

7 

K(Ts + 1 )  X 

s ( s  + a )  

a =  - 

c 2 

b =  - 

S < 
+ e 

c =  - 

When f is of t h i s  form, the  only condition it must s a t i s f y  i s  t h a t  t h e  
coe f f i c i en t  of t h e  highest  der iva t ive  of u be of one s ign  and non vanishing. 

Example 1. - To i l l u s t r a t e  the condition j u s t  described, consider t he  
p l an t  show i n  Fig. 2. The equation describing t h i s  p lan t  i s  .. 

x + ax + Kox = Kox + KTu + Ku (7) 

Fig. 2 - Second Order P lan t  With  Zero 

The des i red  behavior i s  ,given by t h e  model equation 

.. . a + a,% + KO%= K o r  

The e r r o r  equation r e s u l t i n g  from subt rac t ing  (7) from (8 )  is 

e + aoe + Koe = Ko(r-x) - K T u  - Ku +o( x 
.. . . 

( 9 )  

5 



wher; O( = a - aO 

T f o r  ~ ( 2 )  = 2 P 2 , 

KT KT I 
of a pos i t i ve  d e f i n i t e  diagonal Q matrix, 

are elements of t h e  P matrix. p22 

If K T > O ,  i.e. i f  f s a t i s f i e s  the  necessary condition f o r  t h i s  l i n e a r  
time-varying p lan t ,  then a s t a b i l i z i n g  cont ro l  s i g n a l  can be generated by 
choosing 

The con t ro l  s igna l  u i s  generated as shown i n  the  block diagrun of 
Fig. 3 .  
reasons discussed i n  Ref. 4. 

The sa tu ra t ion  funct ion is used r a the r  than the  sign func t ion  f o r  

satby 

Fig. 3 .  - I n s t r m e n t a t i o n  For Generating The Control S igna l  

6 



Note t h a t  K0x has been - t o  t h e  procedure described 
back t o  obta in  a term i n  x 
which contain a t  l e a s t  one 
presence of t h i s  feedback, 

idded t o  both sides of (7). 
i n  Ref. 2 where use is  made of un i ty  l i n e a r  feed- 
on t h e  l e f t  hand s i d e  of t h e  equation. I n  p lan ts  
i n t eg ra to r ,  there  is no need f o r  t h e  phys ica l  

T h i s  i s  i n  c o n b a s t  

s ince  the mathematical formulation given by (7) 
leads  t o  a s a t i s f a c t o r y  cont ro l  l a w  f o r  generating U. 
l i n e a r  feedback pa th  simDlifies commtation of t h e  bounds of t h e  c o e f f i c i e n t s  

Leaving ou t  t he  un i ty  

of (7). 

Another departure from previously reported procedure i s  t h a t  the re ference  
input  r i s  not  f ed  d i r e c t l y  i n t o  the  plant. A plant w i t h  a zero w a s  de- 
l i b e r a t e l y  chosen t o  i l l u s t r a t e  t h e  advantage of t h i s  modification. 
were a d i r e c t  input t o  the  p lan t ,  then one of  the terms i n  (11) would be 5. 
For an r characterized by step changes, t h i s  l eads  t o  the  undesirable s i t ua -  
t i o n  of requi r ing  impulses i n  the  generation of 6. 

If r 

Previously, it has not been pointed out i n  t h e  l i t e r a t u r e  t h a t  maximum 
values of t h e  coe f f i c i en t s  of the  var iab les  i n  (11) should be chosen keeping 
i n  mind t h a t  i f  numerator, N(t) , and denominator, D(t)  , t i m e  v a r i a t i o n s  are 
simultaneously known, a reduction i n  coef f ic ien t  magnitude may be achieved by 
using IN( t) /D(t)l  mm, - not  I~(t)l  ID(^) I min* 
This oversight i n  Ref. 2 l ed  t o  use of a coef f ic ien t  l a rge r  than necessary by 
a f a c t o r  of t h ree ,  and thereby t o  an excessive con t ro l  s i g n a l  leve l .  

The condition imposed on t h e  function f i n  t h e  case of nonlinear p l a n t s  
I f  f i s  n o t  a function of u or  any of i t s  deriva- depends on i t s  argument. 

t i v e s ,  then the  necessary condition f o r  f t o  s a t i s f y  i s  exac t ly  t h a t  j u s t  
discussed f o r  a l i n e a r  time varying plant. 

Ekample 2. - Consider t he  second order p l an t  i n  Fig.  4a with square l a w  
damping. The equation f o r  such a p l an t  is 

0 .  02 
x + a x + K b x = K u + K b r  

(a) Plant (b) Nonlinearity 

Fig. 4 - Second Order Plant U i t h  Square Law Damping 

7 



, 

The model and Liapunov funct ion used i n  Example 1 a r e  used here  and 
i n  a l l  fur ther  examples. i n  t h i s  case i s  

For b = 1 ,  the  control  law required t o  keep negative i s  

u = { K-KO 
l(r-x)l  + pI-1~1 + l;lmax +i@ Y 

02 I n  ( l 3 ) ,  x can be $-istrumented w i t h  a mul t ip l ie r .  However, i f  an 
upper bound, IcI-, onlxlcan be determined, t he  mul t ip l i e r  i s  unnecessary 

and a simple gain for( ; \wil l  suff ice .  This i s  i l l u s t r a t e d  i n  Fig. 4b. 
( 1 5 )  Since la/Kl& liIrnx > la/Kl- x 02 f o r  IXl4-,  

then the  termla/KI- G2 i n  (14) can be replaced by ~ a / K ~ ~ x ~ ~ ~ ~ ~  
i f  operation is r e s t r i c t e d  t o  t h e  range where l~l<l~l-. 

Since the nonl inear i ty  of t h i s  example i s  not  a function of u, t h e  only 
condition which f must s a t i s f y  i s  t h a t  K > 0. 
and (14). 

f r i c t i o n  can be control led using t h i s  technique (Fig.  5). 

This i s  evident from (13) 

Example 3. - Plants  which exh ib i t  e i t h e r  s t a t i c  f r i c t i o n  o r  coulomb 

Th 

8 

(a) P l a n t  

Fig. 5 - Second Order Plant  

(t,) c O d . O m b  Fr ic t ion  ( c )  S t a t i c  F r i c t i o n  

With S t a t i c  o r  Coulomb Fr i c t ion  

equation descr ibing the  behavior of these  p lan ts  i s  

x + a; + f ( i )  = KU 
0 .  



Application of the design equations yields 

The control signal given by (17) i s  adequate f o r  e i ther  the static 
f r i c t ion  or the coulomb f r i c t ion  case. 
f r ic t ion ,  the constant term involving F i s  not necessary fo r  1"1> lkcl. 
This f a c t  can be used to advantage t o  reduce the magnitude of u by 
including a relay i n  the design which removes the constant signal from 
u when 121 > l i c l  

nonlinear plants i s  the plant of Fig. 6 for  which the equation i s  

However, in the case of s t a t i c  

. 
Example 4. - Another example i l l u s t r a t i n g  the design technique fo r  

.. t 
x + & + bx + c$ = Ku- + K udt 

0 
( 18) 

2 . b + c x  

f 

Fig. 6 - Second Order Plant With Hard and Soft Spring Type Nonlinearity 

I n  (18), c > 0, c = 0, and c < 0, corresponds t o  2 hard spring, l inear  
spring, and s o f t  spring respectively. 
forward and leads t o  the control signal 

The design procedure i s  straight- 
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where o< = a - aO. 

The modified forcing funct ion on the  r i g h t  hand s ide  of (18) i n  
Example 4 is necessary because the  p l an t  has no pure in tegra tor .  
t o  be a s t e p  input ,  R, t o  the  model. 
provide a steady s t a t e  input  t o  t h e  plant.  Since i n  normal operation of 
the  control ler ,  1.130 as gj0, t he  cont ro l  signal i t s e l f  cannot perform 
t h i s  function. 
r i g h t  hand s i d e  of (181, can. 

Cons ider r  
I n  t h i s  case means must be found t o  

However, t he  i n t e g r a l  of t h i s  s ignal ,  appearing on the  
I n  the  steady s t a t e ,  2 = 0, x = R and 

K 1; udt = bR + CR 3 . 
The last form of f which w i l l  be considered i s  one which i s  a function 

of U. This case, which arises i n  a p l an t  with a nonlinear gain i n  t h e  
forward path, has been t r ea t ed  previously i n  Ref. 4. The condition required 
of f i s  shown the re  t o  be 

A nonlinear gain i s  a common form of p lan t  nonl inear i ty .  
Ref. 4, t h i s  type of nonl inear i ty  i s  a l s o  handled by a s t ra ightforward 
appl icat ion of this technique, and t h e  r e s u l t i n g  con t ro l l e r s  a r e  e a s i l y  
implemented . 

As shown i n  

Computer Simulation of Several Examples 

Several cases each of Fkamples 2, 3, and 4 were simulated on t h e  

The model used i n  a l l  cases  i s  t h a t  given by ( 8 )  
IEM 7040 d i g i t a l  computer. 
Figures 7 through 13. 
wi th  a. = KO = 2. 
funct ion i n  some cases and as a s i n e  o r  cosine of unit amplitude and 
frequency a= 0.1 i n  others.  
po in ts  on each of the  e r r o r  curves. 
The conditions which per ta in  fo r  each of t h e  Figures 7 through 13 a r e  
desoribed i n  Table I. 
sat 10(2e + 38) . 
even f o r  b = 10, it i s  qu i t e  small most of t he  time. 

The results of these simulations a r e  shown i n  

The input  to  t h e  system, r ( t ) ,  i s  taken as a unit s t e p  

I 

The percentage e r r o r  i s  indica ted  a t  severa l  
T h i s  percentage i s ( ( %  - x ) / ~ ) * ( l O O ) .  

I n  a l l  cases, t h e  cont ro l  s igna l  was generated using 
The e r ro r  can be made smaller by using a b > 10, bu t  

CONVERGENCE TIME 

The control s igna l  generated by the  con t ro l l e r  guarantees t h a t  p l an t  
s t a t e s  approach the  model states. 
t h e  a parameter i s  defined as 

To obtain an est imate  of convergence 

10 



TABU I 

Conditions f o r  Figs. 7 - 13 

dt) x 102. 2 x "(t) 

.ea 

. 5 ~  .o 

. 5  
: 4.762 

' W  I I I .5* 

time 
) (seconds) 

I .95% 
8 12 16 20 

e ( t )  and u ( t ) ,  Ex. 2, Case 2 

t i m e  
(second8 

Fig. 7 - e ( t )  and u ( t ) ,  Ex. 2, Case 1 

e ( t )  x 102, 20 x "(t) 
A 

time 

' (seconds) 

Fig .  9 - e ( t )  and u ( t ) ,  Ex. 2, Case 3 
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'ig. 10 - e ( t )  and u ( t ) ,  EX. 3,  Case I-. 
- 

'ig. 12 - e ( t )  and u ( t ) ,  Ex. 4, Case 1. 

e ( t )  x 102, 2 x u(t) 

2.8 

2.4 

i . 6  

0.8 

0 

-0.8 

-1.6 

-2.4 

-3.2 

Fig. 11 - e ( t )  and u ( t ) ,  Ex. 3, Case 2. 

I .2 

0.8 

0.4 

0 

-0.1 

-0.8 

-1.2 

Fig. 13 - e ( t )  and u ( t ) ,  Ex. 4, Case 2 
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From (21) 

This  last equation can be solved t o  y ie ld  

where 

Ne,) * v(g# t o )  

It i s  seen from (23) t h a t  t h e  design should be directed toward 

Since V depends on u, a nonlinear, non algebraic function, t he  

maximizing the value o f?  i f  convergence time i s  t o  be minimized. 

ac tua l  value o f ) I i s  d i f f i c u l t  t o  compute, 
by defining the two addi t ional  quantit ies,  

This d i f f i c u l t y  i s  avoided 

and 

Since Q i s  the  r a t i o  of two algebraic functions of e, el .. . 
en , the  probyem of maximizing it i s  easier to  handle than t h a t  of 
maximizing? , 

If (26) i s  writ ten as 

then it i s  c l ea r  t h a t  the convergence time depends e x p l i c i t l y  on t h e  
P matrix of the Liapunov function and the  A, matrix of t h e  model. 
Since t h e  design procedure involves a r b i t r a r i l y  choosing a posi t ive 
de f in i t e  matrix Q, then P i s  determined once the choices f o r  Q and A, 
are made. The design problem then i s  t o  choose Q and A, so as t o  
minimize convergence time. 

A conservative estimate of convergence time can be obtained by use 
of the f a c t  t h a t  a posi t ive definite quadratic form i s  bounded above and 
below by the  inequal i ty  

( 2 5 )  

(26) 



where hi 
eigenvalues a r e  posit ive since P i s  a posit ive de f in i t e  matrix. llnll 
symbolizes the square of the Euclidian norm of 2. 
simple estimate for  2 , 

(P) are the eigenvalues of P f o r  i - 1, 2, .... n. These 

Use of (28) allows t h e  

Although (29) allows a simple estimate f o r  
it does not  give an exp l i c i t  re la t ion  from which design parameters can 
be chosen t o  yield a specified value o f =  . 
afforded by (29) is too conservative t o  have much meaning i n  the physical 
problem. 
consideration i s  directed toward the  second order problem. 

once Q and A, are chosen, 

I n  addition, the  estimate 

To acquire fur ther  ins ight  i n to  the  nature of t h e  pa rame te r2  , 

Relation of Convergence Time t o  Design Parameters f o r  the Second Order Case 

To determine howQo i s  affected by t h e  design parameters i n  the 
second order case, it i s  writ ten i n  terms of these parameters as 

where a diagonal Q matrix has been assumed. 
T Solving AoP + PAo = - Q f o r  P y ie lds  

q1 1 
b" 2K, 

P = -  q1 1 + - q22 
x o a o  2ao 22 

where the A, fo r  t he  model given by (8)  has  been used. 

c 



. 
These expressions for  the P matrix elements are substi tuted in to  

(30) t o  give 

where 

*2 
The parameter,& indicates the re la t ive  weighting of e and e* i n  
vo(e>. 

To f ind the minimum value o f r e i t s  derivatives with respect t o  
e and 6 are taken i n  (32) and set equal to zero. 
equation to  be sa t i s f i ed  is 

In  both cases the 

02 

e* +[io - a0 
- e a 0 1 e 6 - p e  = O  

The solution of (33) yields  

e - k l  

where 

If (34) i s  used i n  (32) the  r e su l t  i s  

(k: + p ) ( 2 a o  KJ . .  
% =  

( / 8 K 3  KO + ao2) k: + 2a0 k1 + 1 +p KO 'LO 

Ail of the parmeters  t o  be chosen i n  design, i.8. a. , KO , 
a n d g  , a r e  brought out expl ic i t ly  i n  (35). 

it i s  not i n  general an easy task t o  maximize i t s  minimum value by 
choice of these parameters, 
(35) occurs i f  

Since i s  a function of the three parameters a, KO , a n d p  , 
A significant simplification of (34) and 

i s  chosen such t h a t  B 
P K O  << 1 

(33) 

(34) 

(35) 



For the  second order system given by ( 8 )  

a. * f$c 
where 3 i s  the  damping r a t i o  and 
frequency of the  model. 

t h e  undamped na tu ra l  

Use of (39) and (38) leads  t o  

From (40) it i s  seen t h a t  f o r  a f ixed  damping r a t i o  , t he  
convergence time can be made as small as des i red  by increasing KO 
while keeping,&) KO constant a t  a value which s a t i s f i e s  ( 3 6 ) .  

meters a re  fixed. 
weighed much more heavi ly  i n  the  V funct ion than  i t s  der ivat ive.  
weighting can be in te rpre ted  i n  terms of t h e  switching line defined 
by t h e  switching function of (11). 

Consider t he  s ignif icance of t h e  condition (36) if t h e  model para- 
For KO, 1, p$<l. This means t h a t  t h e  e r r o r  i s  

This 

The equation f o r  t h i s  l i n e  i s  
a. 

e = = -  e 
p22 1 +/-, 

I n  ( W ) ,  if /B KO<< 1, then . e , - a o e  N 

( 3 9 )  

and the  slope of this switching l i n e  has i t s  maximum possible  mami- 
tude. 
been t o  r o t a t e  t h e  switching l i n e  toward the  6 axis i n  t h e  e-& plane. 
The e f f e c t  of this ro t a t ion  i n  decreasing convergence time i s  i l l u s t r a t e d  
i n  Fig. 14. 

Thus, t h e  e f f e c t  of t h e  weighting of states i n  t h e  Q matrix has 
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a 

. 
e 

Fig. U, - Relation of Switching Line Slope t o  Convergence Time 

Higher Order Systems 

An analysis  similar t o  t h a t  above f o r  the second order problem would 
be extremely d i f f i c u l t  t o  carry out for  even a t h i r d  order system. Rather 
than using an exact analysis, the r e su l t s  of the  second order case were 
applied t o  an analogue computer simulation of a th i rd  order plant. The 
t ransient  response for  the error  variable was compared fo r  two d i f fe ren t  
Q matrices. The plant used is described by tile equation 



and the model by 

"he p lan t  described by (43) represents  t h e  p i t ch  a s s t a b i l i t y  
augmentation system of t h e  X-15 manned re-entry vehic le  P . 

To ca r ry  over t h e  r e s u l t s  of t h e  second order  case, t h e  con t ro l  
l a w  was derived first with a Q matrix equal to t h e  i d e n t i t y  matrix 
( t h e  one usua l ly  chosen f o r  convenience i n  t h e  l i t e r a t u r e ) ,  and then 
with a Q matrix i n  which the e r ro r  va r i ab le  was weighed more heavi ly  
than i t s  der ivat ives .  

These matrices are 

Q i  = 0 1  ' 0,- 

0 0 1  . 

1 

0 

0 - 

O O 1  
0 0.01 o*l o J 

The switching funct ion part of the  con t ro l  l a w  r e s u l t i n g  from 
each of these is 

91 = 0.4156 + 1.236 + 1.338 

*ere 71 corresponds to Q1 and y, to Q,. 

The system was s t a r t e d  with init ial  condi t ions e = 5,  
The t r ans i en t  response f o r  both cases  is ahom i n  Fig. 15. 
that t h e  one f o r  Q2 is considerably f a s t e r  than t h a t  f o r  Q1. 

= 0. 
It is seen 
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I . 
I .  e(t) (vol ts)  

(a) Transient f o r  Q, 

1 -  

0 2' k7 4 

e ( t )  (volts) 

(b) Transient for Q2 

Fig. 15 - Transient Response For Third Order System 

CONCLUSIONS 

Controllers can be desimed f o r  a wide c l a s s  of nonlinear plants  
using the  technique presented i n  this report. 
applicable t o  plants  for  which the  form of the  nonlinearity i s  known. 
Digital computer r e su l t s  presented f o r  plants with square l a w  damping, 
s t a t i c  friction,:coulomb f r ic t ion ,  and hard and s o f t  spring type 
nonl inear i t ies  show t h a t  the control effects close agreement between 
the  plant and model reference outputs. 

The technique i s  

time 
second 

An exact expression for  convergence t i m e  i n  terms of design 
parameters i s  derived fo r  t h e  second order case. 
equivalent expression for higher order systems is qutte complex. 
However, the solution of t h e  second order problem does lead to insight  
which i s  useful  i n  designing higher order systems. 

Derivation of an 
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